:
هنگامی که تقطیر برای جدا کردن یک مخلوط انتخاب می شود. این جداسازی می تواند توسط روش های مختلفی انجام شود. تعداد زیادی از فاکتورهای که برای طراحی فرآیند مهم هستند، مانند ایمنی، هزینه های عملیات، انرژی مصرفی، امکان انجام به صورت عملی، وجود دارد. انتخاب مناسب ترین سیستم کنترل تقطیر می تواند مشکل باشد. در بسیاری از موارد ما با در نظر گرفتن موضوعات مختلف یک انتخاب، انجام می دهیم.
در صنعت شیمی و نفت طبق یک گزارش (Rush,1980) در حدود 40-25% انرژی مورد استفاده قرار می گیرد و به طور تخمینی 15-10% انرژی بیش از حد مجاز توسط برج های تقطیر مصرف می گردد. بنابراین پتانسیل برای صرفه جویی در مصرف انرژی وجود دارد و طراحی سیستم های برج تقطیر با راندمان خوب در مصرف انرژی، در هزینه کل پلانت تاثیر بسزایی دارد.
هر جداسازی نیاز به کار و انرژی را افزایش می دهد. در برج های تقطیر کار مورد نیاز به طور غیرمستقیم در طول گرم کردن خوراک و جوش آور و سرد کردن کندانسور مورد استفاده قرار می گیرد. برای مخلوط های چند جزیی به منظور بدست آوردن یک جداسازی با خلوص
بالاتر، معمولا از برج های تقطیر سری که به روش جداسازی مستقیم و یا جداسازی غیرمستقیم عمل می کنند، استفاده می گردد. ما طراحی ساختار کنترل را بر روی برج های تقطیر سری MEDC انجام می دهیم. چیدمان MEDC پتانسیل این را دارد که تا میزان قابل توجهی بسته به نوع چیدمان، ترکیب خوراک و مسایل جداسازی، که چگونگی بالانس را در برج های MEDC معین می کنند، در انرژی صرفه جویی نماید چندین مطالعه کنترلی در این رساله برای کنترل MEDC برای یک جداسازی باینری یا ترنری آورده شده است.
این مطالعه شامل پیدا کردن متغییرهای مناسب اصلاح شده و کنترل شده، و ورودی های اصلاح شده و جفت کردن آنها برای طراحی ساختار کنترل، براساس رویه اریه شده در فصل سوم و همچنین انتخاب پیکربندی کنترل با توجه به مطالب فصل چهارم مناسب می باشد.
نحوه ارائه مطالب رساله:
فصل اول به کلیات و اهداف پیشینه تحقیق و روش تحلیل و طراحی که در این رساله استفاده شده است می پردازد.
فصل دوم بعضی از جنبه های مهم عملکرد حالت پایدار، دینامیک و کنترل برج های تقطیر پیوسته دینامیک و کنترل آنها و ی بر رفتار و پیکربندی های مختلف کنترل را به طور مختصر بیان می کند. عملیات اساساً به جداسازی برج های تقطیر و مخلوط های باینری نسبتاً ایده آل محدود می شود. ما می خواهیم در این بخش، با یک روش ساده، بعضی از موضوعات مهم برای فهم بهتر دینامیک، عملکرد و کنترل برج های تقطیر را مورد مطالعه قرار می دهیم.
فصل سوم به طور کلی با طراحی ساختاری سیستم کنترل، که باید قبل از طراحی کنترلر انجام می شود سروکار دارد. موضوع اصلی که باید توسط تئوری های جدید حل شود، تعیین کردن ساختار سیستم کنترل است. کدام متغییرها باید اندازه گیری شوند و کدام ورودی ها باید تنظیم شوند و کدام ارتباطات باید بین این دو مجموعه برقرار گردد. در این فصل ما یک رویه که ما با استفاده از آن کار طراحی ساختار کنترل در برج های تقطیر سری را انجام می دهیم را معرفی می گردد.
فصل چهارم به طور ویژه مربوط به مبحث انتخاب و طراحی پیکربندی سیستم کنترل برای برج های تقطیر که مرحله سوم رویه ارایه شده، برای طراحی ساختار کنترل در فصل دوم است. اگرچه احتمالا این مرحله از مهمترین مراحل طراحی ساختار کنترل برج تقطیر می باشد اما در مقالات به صورت یک روش سیستماتیک مورد بررسی قرار نگرفته است. هدف این بخش کمک کردن به مهندسان کنترل برای انتخاب بهترین پیکربندی کنترل است. مقالات بسیاری در مورد این موضوع وجود دارد، اما مورد مطالعاتی که آنالیز و تئوری خوبی داشته باشد کمتر پیدا می شود. در این بخش بعضی ابزارهای سودمند مانند تحلیل کنترل پذیری با استفاده از GLDG,RGA را برای تحلیل در حوزه فرکانس را ارائه دهیم.
فصل پنجم در ابتدا با معرفی انواع چیدمان های مختلف برج های تقطیر سری به آنالیز این نوع برج ها پرداخته و در ادامه برج های تقطیری سری که از روی مجتمع سازی گرما برای کاهش مصرف انرژی استفاده می کنند خصوصا برج های MEDC را، مورد بررسی قرار داده و در طول این فصل یک طراحی ساختار کنترل مبنی رویه ارایه شده در فصل دوم رساله؛ بر روی این گونه از برج های تقطیر انجام می دهیم. و پس از فرموله کردن مدل فرآیند به طراحی ساختار کنترل برای دو برج تقطیر سری مجتمع شده خواهیم پرداخت روش ها شامل شبیه سازی دینامیکی و بهینه سازی حالت پایدار خواهد بود.
فصل ششم به نتیجه گیری و پیشنهادات خواهد پرداخت.
1-1- انگیزش
ارزیابی و بهبود قابلیت اطمینان از نیازمندی های اصلی در بهره برداری و طراحی توسعه شبکه های قدرت است. این نیازمندی، خصوصا در فضای جدید بازار و مقررات زدایی، شرکت های برق را با چالش های اساسی مواجه می کند چرا که متضمن بقای آنها در عرصه رقابت خواهد بود. از این رو، شرکت های برق همواره درصدد توسعه روش ها و ابزارهای ارزیابی قابلیت اطمینان به عنوان زیرمجموعه ابزارهای مدیریت دارایی هستند، تا با در دست داشتن تصویر واقعی از وضعیت قابلیت اطمینان شبکه خود، بسترهای بهبود آن را فراهم نمایند.
شبکه توزیع انرژی الکتریکی که حلقه نهایی تحویل انرژی الکتریکی به مصرف کننده است، به علت ویژگی هایی نظیر گستردگی، تجهیزات زیاد و متنوع، نزدیکی به مصرف کننده، و… اهمیت بالایی دارد. متعاقباً مساله حفظ و بهبود قابلیت اطمینان آن بسیار حیاتی خواهد بود. از آنجا که ارزیابی قابلیت اطمینان مبتنی است بر داده های خاموشی گذشته، مطالعات آماری اتفاقات ثبت شده در سیستم مدیریت خاموشی
به عنوان اولین و اساسی ترین حلقه از زنجیره ارزیابی تا بهبود قابلیت اطمینان، اجتناب ناپذیر می شود.
با توسعه ابزارهای آماری و تحلیل داده، به عنوان زیرمجموعه های دانش نوین داده کاوی، عرصه جدیدی در علوم مختلف توسعه یافته است که به استخراج دانش نهفته در پس داده های خامی که در انبارهای داده انباشته شده اند، می انجامد. بهره گیری شرکت های برق از چنین فرآیندی در زمینه های مختلف، منجر به اخذ تصمیم های کاراتر خواهد شد.
از دیدگاه ارزیابی قابلیت اطمینان شبکه توزیع، مطالعه آماری خطاهای شبکه، به شناسایی نقاط حادثه خیز و دلائل اصلی رخداد خطاها کمک می کند. اهمیت این مطالعات در تصمیم گیری جهت تدوین برنامه های نگهداری و تعمیرات عیان خواهد شد، چنان که روی بیلینتون در بیان می کند، شناسایی بخش هایی از سیستم که با صرف هزینه موجب بهبود قابلیت اطمینان می شود، باارزش تر است از محاسبه وضعیت کنونی قابلیت اطمینان در سیستم. به علاوه، ادغام این مطالعات با روش های مدلسازی و تخمین به تعیین رفتار متغییرهایی چون شاخص های قابلیت اطمینان می انجامد.
در مطالعات قابلیت اطمینان شبکه توزیع، اهمیت شاخص های نقطه بار در کنار شاخص های مشترک محور و به عنوان مکمل یکدیگر قابل تامل است. اگرچه عموم شرکت ها به شاخص های مشترک محور نظیر SAIFI و SAIDI بیشتر توجه دارند، ماهیت این شاخص ها تنها تصویری از میانگین وضعیت قابلیت اطمینان شبکه به دست می دهد. شاخص نرخ خطا، به عنوان یکی از شاخص های نقطه بار، در شبکه توزیع از جمله شاخص های متداولی است که با مطالعه رفتار آن دانش وسیعی از ماهیت خطاهای شبکه به دست می آوریم.
:
با رسیدن تكنولوژی سیلیكونی به مرزهای محدودیت ساخت از جمله مشكلات جریان نشتی و تغییرات شدید پارامترهای ترانزیستورهای مشابه در ابعاد نانومتری و نیاز به جایگزینی مواد جدید ، چند ساختار جدید برای یافتن بهترین جایگزین ترانزیستورهای FET مورد بررسی قرار گرفته است .تحقیقات اخیر در نانوالكترونیك پتانسیل بالای ترانزیستورهای نانوتیوب كربنی جهت جایگزینی بجای ترانزیستورهای MOSFET کنونی را نشان داده اند.
نانوتیوبهای كربنی ساختارهایی استوانه ای از اتمهای كربن هستند كه از پیچش صفحات گرافین تشكیل می شوند. قطر نانومتری، استحكام مكانیكی و ضریب هدایت گرم ا یی بالا و پیوندهای كوولانسی اشباع شده، این تیوبها را به ساختارهای بسیار مورد توجه در صنایع گوناگون تبدیل كرده اس ت . از جمله در صنعت الكترونیك و ساخت ترانزیستور ، چنین به نظر می رسد كه این نانوتیوبها بتوانند بسیاری از مشكلات پیش روی این صنعت در سالهای آینده را رفع كنند.
ترانزیستورهای CNFET به روشهای گوناگون و مشخصه های متفاوت ساخته شده اند . بسیاری از این ترانزیستورها تنها از یك نانوتیوب كربنی نیمه هادی به عنوان كانال بهره می برند . در سالهای اخیر و با توسعه تكنولوژی نانو و ابزارهای آن استفاده از چند نانوتیوب در زیر یك گیت نیز مقدور گردیده است . ترانزیستورهای ساخته شده مشخصه های قابل توجهی از خود نشان داده اند و روز به روز بر امكان و احتمال جایگزینی تكنولوژی سیلیكونی با تكنولوژی آمیخته با نانو افزوده می شود.
از جمله برتری های ترانزیستور CNFET سرعت بالا و سطح اشغال شده بسیار كم آن می باشد . این مزایا در آینده موجب ساخت حافظه ها و مدارهای دیجیتال با سرعت بالا و ابعاد كوچك خواهند شد . اما در اینجا نیز لازم است تا همانند تكنولوژی كنونی جهت پیش بینی عملكرد ترانزیستورها مدلی ارائه گردد كه بتواند با توجه به شرایط فیزیكی قطعه توصیف صحیحی از رفتار آن در مدار های مختلف داشته باشد . سادگی، سرعت و قابلیت بكارگیری مدل توسط شبیه سازهای مداری از جمله موارد مهمی هستند كه باید در مدلسازی قطعه مدنظر قرار گیرند.
:
«میکروفلوئید» حوزه اس از سامانه های میکرو الکترومکانیکی است که با رفتار، کنترل دقیق و کاربرد سیالات در مقیاس حجمی میکرو و نانو سروکار دارد.
پژوهش در زمینه افزاره های میکروفلوئیدی اخیراً با رشد بسیار سریعی روبرو شده است. این افزاره ها، کاربردهای متنوعی در صنعت یافته اند و پیش بینی می شود که این رشد برای سال های آتی نیز ادامه داشته باشد. سامانه های میکروفلوئیدی از اجزای مختلفی ساخته
می شوند، برخی از این اجزا عبارتند از: میکروپمپ ها، میکروکانال ها، میکرومخلوط کننده ها، میکروحسگرها، مخازن سیالات و دریچه ها که معمولاً در مقیاس میکرونی ساخته می شوند.
میکروکانال های توزیع سیال (لوله های مویین) برای عبور سیال در شاخه های مختلف سامانه های میکروفلوئیدی استفاده می شوند و کاربردهای وسیعی یافته اند. جریان سیال در این کانال ها بین چندصد نانولیتر تا چند میکرولیتر بر دقیقه می باشد. دو کانال را می توان به گونه ای ایجاد نمود که باهم ارتباط داشته باشند. این نوع کانال ها معمولاً طولی در حدود چندصد میکرون تا چند ده میلیمتر و عمق و عرضی به ترتیب در حدود 2 تا 100 میکرون دارند.
سامانه هایی که از اجزای فوق ساخته می شوند اصولاً سطحی حدود چند سانتیمتر مربع اشغال می کنند. سامانه های میکروفلوئیدی در زمینه های متنوعی کاربرد یافته اند. که از آن جمله می توان به صنایع داروسازی، تحلیل شیمیایی، حسگرهای شیمیایی و بیوپزشکی، انتقال دارو، جداسازی مولکولی نظیر تحلیل دی ان ای، تقویت، تعیین توالی یا سنتز نوکلئیک اسیدها اشاره نمود. این سامانه ها، همچنین بخش مهمی از سامانه های کنترل دقیق در خودروهای مدرن محسوب می شوند و انتظار می رود که در صنایع هوافضا، صنایع تغذیه و صنایع نیمه هادی کاربردهای جدیدی پیدا کنند. مزایای اصلی استفاده از سامانه های میکروفلوئیدی در تراشه های Lab-on-a-chip، راندمان بالا، قابلیت مجتمع سازی، تولید انبوه، کم شدن زمان لازم برای انجام واکنش و امکان انجام عملیات موازی می باشند. در این پایان نامه به بررسی عملکرد انواع مختلفی از افزاره های میکروفلوئیدی با روش های مختلف مدل سازی می پردازیم.
:
با توجه به اهمیت سیستم های کنترل و قرائت از راه دور، امروزه از روش های مختلفی برای این منظور استفاده می شود. علاوه بر روش کنترل و قرائت از طریق اینترنت، روش های دیگری نیز برای این منظور وجود دارد که در فصل دوم به آنها اشاره شده است. دستگاه THC برای پیاده سازی سیستم کنترل از طریق تلفن، طراحی و ساخته شده است که طریقه عملکرد، نقشه داخلی و نقشه سیستم کنترل در قسمت ضمیمه I آورده شده است. همچنین در این فصل ی گذرا به سیستم های الکترونیکی که دارای واسط Modbus جاسازی شده می باشند و همچنین در مورد واسط DDE که یک واسط نرم افزاری برای پیاده سازی سیستم کنترل و قرائت می باشد انداخته شده است.
برای پیاده سازی واقعی سیستم، نیاز به یک PLC که دارای قابلیت پشتیبانی واسط نرم افزاری مانند DDE است، می باشد که FATEK دارای این قابلیت می باشد. امکانات این PLC در فصل سوم به طور کلی آورده شده است و در ارتباط با ویژگی های شبکه ای این سیستم و بخصوص ماژول اترنت که نقش اصلی در طراحی سیستم نهائی این پروژه را ایفا می کند، به طور نسبتاً مفصل مطالبی آورده شده است.
همچنین برای پیاده سازی نهائی سیستم، نیاز به معرفی یک فرایند می باشد. فرآیندی که محیط نرم افزاری برای آن طراحی شده است فرآیند ساختمان به طور عام و فرآیند سرمایش، گرمایش و تهویه مطبوع به طور خاص می باشد. برای طراحی سیستم کنترل، نیاز به شناخت کامل از فرآیند می باشد. صنعت تهویه مطبوع دارای ابعاد و کاربردهای بسیار وسیعی می باشد که در فصل چهارم به طور مختصر به آن پرداخته شده است.
فصل پنجم در ارتباط با طراحی سیستم سخت افزاری کنترل می باشد. در این فصل تعداد ورودی و خروجی مورد نیاز هر PLC برای پیاده سازی سیستم های تهویه مطبوع و اتوماسیون ساختمان با کاربردهای مختلف و همچنین نرم افزار دیاگرام نردانی PLC برای سیستمی که در این پروژه در نهایت اجرا گردیده است، آورده شده است.
فصل ششم به چگونگی طراحی محیط نرم افزاری HMI بر مبنای وب پرداخته شده است. در محیط طراحی شده از نرم افزارهای SQL Server و Visual Studio 2005 و ASP.net و Flash و #C استفاده گردیده است. در این فصل کلیه صفحات طراحی شده آورده شده است.
در فصل هفتم جمع بندی مطالب به همراه پیشنهادات توسعه طرح، آورده شده است.