آرایه های فازی به آرایه هایی اطلاق می شود که راستای بیم اصلی یات شکل پرتو آن توسط فاز نسبی جریان تحریک عناصر کنترل شود. البته می توان با تغییر دامنه جریان تحریک عناصر نیز جهت بیم اصلی را عوض کرد. معمولا رادارهای آرایه فازی یک روزنه ^50*^50 دارند که این روزنه یک بیم مدادی شکل 1 درجه می دهد. اگر هزینه ساخت محدودیت ایجاد نکند روزنه را با 10000 المان پر می کنند که به فاصله 2/^ از یکدیگر قرار گرفته اند. و اگر هزینه ها محدودیت ایجاد کند باید روزنه را با تعداد مشخصی از المان ها پر کرد. در کاربردهای نجوم و اخترشناسی برای ایجاد قدرت تفکیک فضایی بالا طول آرایه فازی به چندین ده کیلومتر می رسد که با خطوط انتقال با تلفات پایین مثل کابل های کواکسیال، فیبرهای نوری و موجبرهای بزرگ به یکدیگر وصل شده اند. قدرت تفکیک فضایی در این آرایه ها به یک آرک ثانیه و یا حتی کمتر از این می رسد که با دقت فضایی به دست آمده از تلسکوپ های نوری قابل مقایسه می باشد.
هر آنتن دارای یک امپدانس معادل در پایانه اتصال آن به منبع تحریک است که امپدانس نقطه تحریک خوانده می شود. حال اگر آنتن در یک محیط نامحدود و در حضور المان های تشعشعی دیگر تشعشع کند امپدانس نقطه تحریک همان امپدانس خودی آنتن است که معمولا به دلیل وجود زمین اثر آن باید در نظر گرفته شود. امپدانس نقطه تحریک دارای یک بخش حقیقی و یک بخش موهومی است که در بررسی میدان دور از اثر موهومی صرفنظر می شود. امپدانس آنتن بستگی به عوامل زیادی مثل فرکانس کار، شکل آنتن، روش تحریک و مجاورت با المان های دیگر دارد. امپدانس آنتن همان نسبت میدان الکتریکی به میدان مغناطیسی است که در پایانه یک آنتن به صورت نسبت ولتاژ به جریان پایانه تعریف می شود. امپدانس متقابل هر المان نسبت به هر المان دیگری که در آرایه قرار گرفته است به صورت نسبت ولتاژ در آن المان به جریانی که در المان دیگر وجود دارد تعریف می شود به شرطی که پایانه المان اول اتصال باز باشد یعنی جریانی از آن نگذرد.
رویه مشخص محاسبه پترن تشعشعی آنتن های آرایه فازی بدین شرح است که پترن های تشعشعی المان های منفرد را با هو جمع می
کنند. وقتی همه المان ها یکسان باشند پترن کل آرایه عبارتست از حاصلضرب فاکتور المان در فاکتور آرایه. فاکتور آرایه با جمع مستقیم یا در شبکه های پریودیک با تبدیل فوریه سریع (FFT) محاسبه می شود. این نشان می دهد که عملکرد تشعشعی آرایه ارتباط مستقیم با عملکرد المان های منفرد دارد. فاکتور المان باید محاسبه یا اندازه گیری شود و بستگی به طراحی فیزیکی تشعشع کننده و همچنین کوپلینک متقابل میان تشعشع کننده ها دارد. المان های لبه آرایه، فاکتور المان متفاوتی نسبت به المان های مرکزی دارند. بنابراین رفتار متفاوتی نسبت به حالتی دارند که به صورت مجزا تشعشع می کنند. به طور معمول هر المان باید طوری طراحی شود که امپدانس آن تطبیق قابل قبولی را در پهلو آتش داشته باشد اما به دلیل کوپلینگ متقابل میان المان ها عدم تطبیق به وجود می آید. عدم تطبیق، عملکرد منابع تحریک یا دریافت کننده ها را دچار اختلال می کند که باعث ایجاد انعکاسات چندتایی و ایجاد بیم های مصنوعی می کند. پس مطلوبست که عملکرد تشعشعی المان در آرایه مشخص شود. در این صورت فاکتور المان اکتیو به جای فاکتور المان مورد بررسی قرار می گیرد که تابعی از زاویه مشاهده شده (&,0) و زاویه اسکن (&,0) می باشد.
در آرایه های کوچک کوپلینک متقابل به دو صورت معرفی می شود: (1) تغییر امپدانس اکتیو و عدم تطبیق میان المان ها و مدارات تغذیه. (2) اعوجاج پترن المان اکتیو آرایه. که این تغییرات نیز به نوبه خود به دو صورت بر سیستم آنتن اثر می گذارند: (i) تغییر دامنه و فاز در روزنه تشعشعی آنتن یعنی توزیع دامنه و فاز میدان تشعشعی به طور مستقیم با دامنه و فاز جریان تحریک در المان ها متناسب نیست. (ii) پترن تشعشعی میدان دور آنتن از حاصلضرب فاکتور المان در فاکتور آرایه به دست نمی آید. این اثرات باعث می شوند تا خواص تشعشعی مطلوب مثل SLL پایین و اسکن بیم در جهات مورد نظر به دست آورده نشوند. روش های مختلفی برای کاهش و یا جبرانسازی اثر کوپلینگ در آنتن های آرایه ای کوچک بکار گرفته شده است. به عنوان نمونه در روش جبرانسازی اثر کوپلینک متقابل با به دست آوردن خطای پترن، ابتدا خطای به وجود آمده در پترن المان آرایه محاسبه گشته و سپس با اعمال ضرایب مناسب، خطا تصحیح شده و کوپلینگ متقابل جبرانسازی می شود. روش دیگر جبرانسازی اثر کوپلینگ متقابل با استفاده از مفهوم پترن المان اکتیو می باشد، که در این روش جبرانسازی براساس محاسبه ضرایب کوپلینگ و تشکیل ماتریس کوپلینگ می باشد. بدین منظور ابتدا ضرایب کوپلنیگ متقابل بین المانهای آرایه به دست می آید و سپس با توجه به روابط مشخص می شود که چه ضرایبی (دامنه و فازی) باید به هر المان اعمال شود تا جبرانسازی صورت گیرد. روش دیگری که برای کاهش کوپلینگ متقابل در آرایه ها به کار می رود استفاده از تئوری فراکتال می باشد که روش پیشنهاد شده برای کاهش کوپلینگ متقابل در این پایان نامه استفاده از المان های فراکتالی به جالی المان های مستطیلی می باشد.
مدیریت دانش یکی از مهمترین منابع رقابتی برای هر سازمان محسوب می شود به نحویکه بسیاری معتقدند که شرکت هایی که بتوانند هر چه سریعتر دانش را کسب و به مرحله کاربردی برسانند در یک بازار رقابتی ، موفق تر خواهند بود . از طرفی دیگر رقابت بین شرکتی اهمیت خود را ازدست داده است و رقابت بین زنجیره های تامین جهت ارائه حداکثر ارزش به مشتری مورد تایید گرفته است . مدیریت زنجیره عرضه موقعیت استراژی عملیاتی در هر دو زمینه ی صنایع تولید و خدمات فرض شده است و بیش از 10 سال گذشته شرکت ها به طور جدی استراتژی های مدیریت زنجیره عرضه را در سازمان خود پیاده سازی کرده اند . مدیریت دانش توانمندی اصلی مدیریت زنجیره عرضه و یک عنصر حیاتی از اطلاعات فشرده و محیط های سازمانی چند فرهنگی است . درک اهمیت مدیریت دانش در زنجیره عرضه ،
تلاشی است که در این تحقیق انجام شده تا یک چارچوب مفهومی برای مدیریت دانش در مدیریت عرضه ارائه کند و با استفاده از یک مطالعه موردی که توسط شرکت های فرانسوی انجام شده است .
مواردی که در این نوشتار بررسی شده عبارتند از : تعارفی از مدیریت زنجیره تامین ، زنجیره ارزش ، زنجیره تقاضا و زنجیره عرضه ، نیاز به مدیریت زنجیره تامین ، منافع مدیریت موثر زنجیره تامین ، عناصر مدیریت زنجیره تامین ، مباحث استراتژی ، تاکتیکی و عملیاتی در مدیریت زنجیره تامین و چند موضوع دیگه ….
در پایان نیز با ارائه یک چارچوب مفهومی برای مدیریت زنجیره تامین و مطرح کردن رقابت جدید در محیط مدیریت عملیات سعی شده است از مباحث عنوان شده قبلی نتیجه گیری قابل قبولی صورت گیرد . مدیریت زنجیره تامین جدیدی است که در سال های اخیر بر مدیریت عملیات حاکم شده است . زنجیره تامین شبکه از مراکز توزیع است که یکی از وظایف آن تبدیل مواد خام به محصولات نهایی و توزیع آنها در میان مشتریان است . مدیریت زنجیره تامین فعالیت ها طوری هماهنگ می کند که مشتریان بتوانند محصولات را با کیفیت بالا و با حداقل هزینه به دست آورند . مدیریت زنجیره تامین می تواند بریا شرکت مزیت رقابتی فراتهم سازد . مدیریت زنجیره تامین اشتیاق شرکت را برای همکاری و رقابت افزایش می دهند. دانش مهمترین مزیت رقابتی سازمانها در عصر حاضر محسوب می شود .
:
بیش از دو دهه است كه با رشد سریع اینترنت، كاربردهایی از تكنولوژی دورعملیات بطور پیوسته در زمینه های مختلفی از قبیل: اكتشافات فضایی، محیط های زیر آب، پزشكی، معادن، صنایع، حمل مواد هسته ای، جابجایی مواد سمی، سرگرمی و… پیشرفت های قابل توجهی داشته است. بسیاری از محققان گرایش زیادی به استفاده از اینترنت برای انتقال اطلاعات بین بخش های مختلف از یك ربات در محیط دور با توجه به مزایای آشكار آن مانند هزینه پایین، دسترسی آسان و انعطاف بالا دارند با این وجود، استفاده از اینترنت به دلایلی مانند قطع اتصال شبكه، گم شدن بسته های اطلاعاتی، محدودیت پهنای باند و مخصوصاً تأخیر زمانی ممكن است سبب ناپایداری، از دست رفتن ترانسپارنسی و ناهمزمانی در سیستم دورعملیات خصوصاً در سیستم های شامل سوپر مدیا و دوطرفه گردد. اصولاً در سیستم های دورعملیات دوطرفه علاوه بر از پایداری و ترانسپارنسی، دو هدف دیگر نیز وجود دارد كه كوپلینگ بسته بین اپراتور و محیط ریموت را تضمین می نماید. اولین هدف این است كه، بازوی مكانیكی فرمانبر بایستی موقعیت بازوی مكانیكی فرمانده را ردیابی نماید. دومین هدف این است كه وقتی فرمانبر با محیط در تماس است نیروی عكس العمل محیط روی فرمانبر بطور دقیق به فرمانده انتقال داده شود. امروزه مقالات بسیاری وجود دارد كه انواع مختلفی از روشهای كنترلی جهت غلبه بر ناپایداری و كاهش خطای ردیابی ناشی از تأخیر زمانی كانال انتقال را پیشنهاد داده اند. این روشهای مبتنی بر تئوری پراكندگی، متغیرهای موج، پسیویتی، سنتز μ، كنترل بهینه، كنترل پیشگو، كنترل
تطبیقی و بسیاری اصول دیگر می باشند. در سال 1957 اسمیت روشی را به نام پیش بینی كنندة اسمیت برای كاهش زمان تأخیر ارائه نمود. در سال 1966 فرل برای اولین بار ناپایداری یك سیستم دورعملیات با حضور زمان تاخیر را نشان داد. در سال 1981 ورتوت نشان داد كه پایداری چنین سیستمهایی با وجود زمان تأخیر در صورتی كه پهنای باند سیستم به مقدار قابل توجهی كاهش پیدا كند امكان پذیر می باشد. در سال 1992 سالكودین با استفاده از تئوری H∞ طراحی كنترلر دوطرفه جهت حداقل سازی خطای ردیابی و حداكثر سازی ترانسپارنسی استفاده نمود. در سال 1997 نای میر و اسلاتین روش متغیرهای موج را در ارسال سیگنال در سیستمهای دورعملیات بكار برده و از تئوری انفعالی برای پایداری سیستم بهره برد. در سال 2003 ، هانگ و لوئیس جهت جبران تأخیرهای طولانی ناشی از كانال انتقال از روش كنترل پیشگو برمبنای شبكه های عصبی استفاده نموده اند. در سال 2005، كامرانی و مومنی رفتار یك كنترلر تطبیقی چندتایی را با استفاده از روش پیشگویی موج چند متغیره برای تأخیرهای زمانی اتفاقی را بررسی نمودند. در سال 2006 سیروس پور یك كنترلر LQG را برای كنترل سیستمهای دورعملیات تأخیر ثابت ارایه نمود.
این پایان نامه شامل شش فصل می باشد. فصل اول به “معرفی سیستم های دورعملیات و كاربردهای آن” می پردازد. در فصل دوم ” بررسی تئوریها و انواع روشهای كنترلی در سیستم دورعملیات” و فصل سوم “توصیف روش كنترل بهینه” ارایه شده است. “توصیف فضای حالت سیستم دورعملیات و شبیه سازی آن” در فصل چهارم ارایه شده است. و فصل پنجم “بكارگیری روش كنترل بهینه در مدل فضای حالت سیستم دورعملیات و شبیه سازی آن” را ارایه می كند. نهایتاً در فصل ششم “نتیجه گیری و پیشنهادات” ارایه شده است.
:
كمپرسورهای گریز از مركز به دلیل كاربرد گسترده ای كه در صنایع مختلف برای فشرده سازی و انتقال گازها جهت مصارف فرآیندی دارند از اهمیت و یژه ای بر خوردارند. پدیده سرج كه یك ناپایداری فلو در كمپرسورها به حساب می آید، ناحیه عملكرد سیستم فشرده سازی را محدود می نماید و مانع از دستیابی به حداكثر راندمان كمپرسور می شود. لذا كنترل این پدیده از مدتها قبل در كانون توجه محققان قرار گرفته است. تاكنون روشهای مختلفی جهت كنترل این ناپایداری در كمپرسورهای گریز از مركز پیشنهاد گردیده است. با توجه به كاربرد كمپرسورهای محوری در موتورهای جت و هواپیما، بیشتر كارها در زمینه كنترل سرج مربوط به كمپرسورهای محوری می باشد، بدین منظور در فاز مطالعاتی پروژه ابتدا روشهای كنترل سرج در كمپرسورهای محوری مورد بررسی قرار گرفتند و روش تطبیقی به عنوان
روشی مناسب جهت كنترل سیستم غیرخطی كمپرسور برای پیاده سازی بر روی مدل كمپرسورهای گریز از مركز جهت كار در این پروژه انتخاب گردید.
فصل اول: كلیات
1-1) هدف
ناپایداری سرج عبارتست از نوسانات یكبعدی كه منجر به افزایش فشار و فلوی جرمی كمپرسور می گردد.سرج ناحیه كاری سیستم را به شدت تحت تاثیر قرار داده و راندمان آن را كاهش می دهد و نهایتا منجر به آسیب جدی كل سیستم می گردد. این پدیده در نرخ های فلوی جرمی كم كمپرسور رخ می دهد و نتیجه آن ایجاد نوسانات با دامنه بزرگ در فشار و نرخ فلوی جرمی خروجی از كمپرسور است.
تاكنون كارهای زیادی برای حذف مشكل سرج انجام شده است و بیشتر این كارها بر اساس كار گرایتزر (1976) و گرایتزر و موره (1986) می باشند. زیرا این افراد اولین كسانی بودند كه مدلهای دینامیكی را برای آنالیز و طراحی سیستمهای كنترل جهت سیستمهای فشرده سازی و پایدارسازی آنها، پیشنهاد نمودند و مدلهای ارائه شده توسط آنها بطور گسترده ای مورد استفاده و بهره برداری سایر محققین این زمینه كاری قرار گرفته است. در ابتد ا مدلسازی و كنترل سیستمهای فشرده سازی بر روی
كمپرسورهای محوری متمركز بوده است زیرا این كمپرسورها كاربرد وسیعی در موتورهای جت دارند، لذا در مقایسه با این نوع كمپرسورها، كارهای انجام شده بر روی كمپرسورهای گریز از مركز محدودتر می باشد. روشهایی را كه به كنترل كمپرسورهای محوری پرداخته اند در مراجع [1] تا [9] می توان یافت. در سالهای اخیر با توجه به كاربرد گسترده كمپرسورهای گریز از مركز در صنایع بزرگی چون نفت، گاز و پتروشیمی، لزوم ارائه روشهایی جهت كنترل این پدیده در كمپرسورهای گریز از مركز بیش از پیش احساس می گردد.
2-1) پیشینه تحقیق
مدل دینامیكی به دست آمده برای كمپرسور گریز از مركز بر اساس مدل دو حالته با پارامترهای lumped طبق مدل ارائه شده توسط گرایتزر می باشد. فینك، كامپستی و گرایتزر یك مدل سه متغیر حالته با پارامترهای lumped را برای سیس تمهای فشرده سازی گریز از مركز در سال 1992 استخراج نمودند كه دینامیك های spool را نیز در نظر گرفته بود. این مدل با جزئیات بیشتری در تز دكترای گراودهال آمده است. بر اساس این دو نوع مدل دینامیكی ، روشهای مختلفی جهت حذف ناپایداری سرج در كمپرسورهای سانتریفیوژ طراحی شده اند.